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We show a purely coarse-grained model for Taylor dispersion based on extended irreversible ther-
modynamics which captures the main features of Taylor dispersion along all the time span: asymp-
totic diffusive behavior, transient anisotropy, incorporation of transverse initial conditions, and tran-
sition to irreversibility. The macroscale model equation is recovered from an analysis in the detailed
three-dimensional space, and its predictions for the lowest moments of the solute concentration are
satisfactorily compared with numerical simulations at all times for initial distributions sufficiently
spread along the tube section. Special attention is paid to the transition to irreversibility in Taylor

dispersion.

PACS number(s): 47.60.+i, 05.70.Ln, 66.10.Cb, 05.60.+w

I. INTRODUCTION

Taylor dispersion originally arose in the study of the
longitudinal dispersion of a solute dropped in a solvent
which flows along a rectilinear tube [1-3]. In 1953, Taylor
found the fundamental result that the combined action
of a unidirectional velocity field and transverse molecu-
lar diffusion leads to a longitudinal diffusion for asymp-
totic long times. Since then much work has been done
trying to generalize his results. These efforts have been
addressed in different directions and from very different
points of view; besides regarding Taylor dispersion as a
hydrodynamic problem [4-9], some authors have stressed
its relation to the elimination of fast modes [10, 11], or
the theory of stochastic processes {12, 13].

From a different viewpoint, Brenner et al. have devel-
oped the so-called generalized Taylor dispersion (GTD)
[14-19]; this theory provides a macroscale description of
the corresponding microscale transport processes which
confers a unified structure upon a wide variety of physi-
cal situations such as, for instance, sedimentation of non-
spherical particles [20, 21], surface transport [22], or dis-
persion of polymers in solution [19], to name only a few.
A special feature of GTD is that it can be applied to the
study of flows under nonrectilinear ducts, in contrast to
the original Taylor description, but like it, it is only valid
in the long-time limit. Frankel and Brenner tried with-
out success to extend the formalism of GTD in order to
improve the asymptotic order of approximation [18].

The study of Taylor dispersion at intermediate times
has been faced in the past by other authors [4-8, 10,
11]. All of them start from the tridimensional convection-
diffusion equation

acg;, t) uacéz ,t) + 9 m 3 c(a; t) (1)
where Av = v(y, 2) —u and Ac = ¢(z, y, z,t) —c(:c,t) are

the deviations from the mean (section-averaged) values
of the velocity field, v(y, z), and the concentration pro-
file, c(z,y, 2,t), respectively (the overbar denotes section
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averaging). On the other hand, they make some hypothe-
sis on the dependence of the cross-sectional variation Ac
in terms of the average concentration c¢(z,t), following
Taylor’s ideas.

Thus, these authors try to find a closed equation for the
one-dimensional quantity ¢(z,t) from an analysis in three
dimensions (3D). This standpoint is similar to the prob-
lem of finding the hydrodynamic equations starting from
the more detailed description of kinetic theory. Hydro-
dynamic equations, however, can also be obtained from
a formalism which corresponds to the same level of de-
scription: the thermodynamics of irreversible processes.
The problem is that for the isothermal dispersion under
study, the classical theory of irreversible processes [23] is
only able to supply the diffusive behavior characterizing
the asymptotic Taylor dispersion.

Using a different thermodynamic framework, the so-
called extended irreversible thermodynamics (EIT) [24],
we have demonstrated that the Taylor flux is an actual
dissipative flux, with a related entropy, entropy flux,
and entropy production, the latter being positive defi-
nite along time evolution as required by the second law
of thermodynamics [25]; it contains Taylor’s statement
as a limit case, since in the long-time limit the dynamics
of the fluxes is diffusive. Then, our basic aim is to use
this fundamental result in order to obtain the simplest
constitutive equation capturing the main features of the
longitudinal dispersion of the solute along all the time
span, paying special attention to the transition to irre-
versibility. This equation, by its own nature an approxi-
mation, is shown to be a renormalization over the whole
spectrum of transverse modes, and its validity is tested
through the comparison with numerical simulations. It
is worth emphasizing that, in contrast to previous ap-
proaches, not only is the resulting equation we get one
dimensional, but also it is the procedure we follow to
obtain it.

The paper is organized as follows. In Sec. II, we obtain
a constitutive equation for the Taylor dispersion flux from
the formalism of extended thermodynamics. In Sec. III,
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48 PURELY GLOBAL MODEL FOR TAYLOR DISPERSION 311

we recover the macroscale model equation starting from
the detailed tridimensional space, thus getting the ana-
log to the kinetic derivation of the hydrodynamic equa-
tions; this analysis provides us with specific values for
the transport coefficients appearing in the coarse-grained
equation. In Sec. IV, we perform numerical simulations
for the study of the transition to irreversibility in Tay-
lor dispersion and compare with the theoretical predic-
tions of our model. In Sec. V, we contrast the results
of numerical simulations under nonuniform initial distri-
butions with the theoretical predictions for the lowest
moments of the distribution. Section VI compares the
global model with other theoretical approaches, and Sec.
VII is devoted to conclusions.

II. A PURELY GLOBAL MODEL FOR TAYLOR
DISPERSION BASED IN EIT

In Ref. [25], we saw that if we want to get an exact one-
dimensional description of the solute dispersion in a tube,
we have to deal with an infinite set of coupled constitu-
tive equations — one for each mode — and, accordingly,
an infinite number of transport coefficients. In this situ-
ation one can seriously wonder which are the advantages
of working in the coarse-grained space instead of doing
it in the complete three-dimensional space, where the
dispersion follows a simple convection-diffusion equation.
Therefore, our goal is obtaining an approximate equation
by compacting the infinite number of modes constituting
the Taylor dispersion flux into one single mode, the Tay-
lor flux itself Jp, considered as a single quantity. Since
we have already proved that the Taylor flux is a dissipa-
tive flux of extended thermodynamics, we are qualified to
use the machinery of EIT in order to find the constitutive
equation for Jr.

Extended thermodynamics differs from the classi-
cal theory of irreversible processes in that the local-
equilibrium hypothesis is not assumed, and in that the
variables used to describe a nonequilibrium state are not
only the ones appearing in equilibrium, but also the dis-
sipative fluxes (for a detailed study see Ref. [24]). It is
thus proposed a generalized nonequilibrium entropy that
depends on all these variables. In the simplest case, for
Taylor dispersion under isothermal conditions one is lead
to the following generalized Gibbs equation:

ds(z,t) = —p(z, )T de(z,t) — aJp-dIr, (2)

s(z,t) being the entropy per unit volume, u(z,t) the
chemical potential of the solute, T" the absolute tempera-
ture, and a a scalar coefficient which does not depend on
Jr. The first term on the right-hand side corresponds to
the local equilibrium contribution, and the second one is
a flux—dependent purely nonlocal part of the generalized
entropy.

Similarly, a generalized entropy flux is introduced as a
general function of the dissipative fluxes. As in Ref. [25],
we add to the classical expression for the entropy flux,
—u(z,t)T~1J7, a term aiming to describe the transient
anisotropy in the solute dispersion induced by the ve-
locity profile (this is a well-known feature of the Taylor

dispersion that the same Taylor had already observed in
his early experiments [1, 2]), and a term accounting for
spatial correlations (although no experimental observa-
tion of them has been mentioned in the literature, in
Ref. [25] we saw that they stem from a theoretical anal-
ysis in three dimensions, so that we consider them here
for the sake of completeness):
I (z,t) = —p(z, )T I — —;-aoJ%u —6Pp-Jp, (3)
where ¢ and § are phenomenological coefficients with
no dependence on Jr, u is a vector in the direction of
the flow and with modulus u, the mean speed of the
solvent as seen from the frame where the tube is fixed,
and Pr is a second-order tensor designating the flux of
Jr; as we saw in Ref. [25], the inclusion of a term of this
type in the entropy flux allows one to incorporate spatial
correlations. The second term on the rhs accounts for
the anisotropy induced by the flow, since the change u —
—u modifies the sign of this contribution. Other terms,
like u2J7 or Pr - u, although mathematically possible,
are forbidden by thermodynamics because they lead to
nonpositive values for the entropy production.
Combining Eqgs. (2) and (3) with the entropy balance
equation

ds(z,t)
= 4
dt oz ¥ (4)
one obtains for the entropy production (since we are

working in one dimension, vectorial notation is omitted
from now on)

— 6/£ dJT 8JT 5PT
—_ _ 1 haduic ) 4
= JT[T 3p t g Hooug— +68x]

P [ & ] (5)

The terms inside the square brackets are identified as the
conjugate thermodynamic forces of the fluxes preceding
them. The positiveness of entropy production stated by
the second law of thermodynamics implies a relation be-
tween fluxes and forces which, in the simplest case, is
assumed to be linear:

dJ
Pr=-K;'6~ a; (6)

and

0 dJ- aJ.
JT=—K1 [ -1 N T oJr

oPr
oz T %@ T +63x]

(M

K, and K> being positive coefficients. After introducing
(6) into (7), some straightforward calculations yield

. 6JT _ dc 2 a JT
Jr + mrJr + 176U e Dr — E + 5 — 522 (8)

under the identifications
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1 du a o 62
—_ ———.— = — = —, l = .
DT KlT dc T, T Kl’ ﬁ [0 T K1K2
(9

The dot denotes substantial time differentiation, that is
to say, the time derivative as seen from a framework mov-
ing with the barycentric velocity of the coarse-grained
fluid particles. Note that in the Taylor dispersion, the
solutions are usually considered to be diluted enough so
as to identify the tridimensional barycentric speed with
the solvent velocity, so that it turns out that the mass av-
erage speed of the one-dimensional fluid particles coincide
with the mean solvent velocity, u. Since we set ourselves
in the framework travelling with the mean solvent speed,
this entitles us to substitute substantial derivatives by
partial time derivatives throughout the paper.

Equation (8) is the central result of this work. Aside
from the classical Fickian contribution for the Taylor dis-
persion flux, it contains a relaxational term characterized
by the time parameter 71, a correlation length Iz, and
an anisotropic term, the one in 0J/0x, whose parity is
obviously different from the one of the preceding terms,
so that B is a numerical parameter characterizing the
anisotropy.

620 dc 8% oy 03¢
TTam T o T TP — (rrDm + ) o5 =

with D = Dp + D,, the total diffusion coefficient. Let us
comment on some features of this equation.

(a) It is of the telegrapher’s type (a much more sim-
plified version of it has been used in the study of solute
dispersion in rivers by Thacker [26]), and the coefficients
are constant, so that although solving may be extremely
complicated, the analysis of its moments becomes quite
simple.

(b) It allows for the incorporation of some details of
the transverse initial distributions, since being a second-
order differential equation in time its solution requires
some initial conditions in d¢/dt. This is a basic point in
the description of the solute dispersion in the short-time
limit, highly dependent on the initial solute distribution
along the section of the tube.

(¢) In the long-time limit it supplies the difusive behav-
ior characterizing the Taylor-Aris result. This is like this
because, in the Taylor limit, i.e., L/u > 77 [1], with L
the size of the solute distribution, the solute is so spread
along the tube direction that the terms in the third and
fourth spatial derivatives in (12) can be neglected as com-
pared to the one in the second derivative, and all the
terms on the left-hand side are negligible with respect to
the one in dc/8t. (For a tube of section a, we will see in
the next section that (2. ~ D, 7r ~ a2.)

(d) It describes a transient anisotropic dispersion
through the terms containing the parameter 3: at in-
termediate times, the solute disperses differently in the
sense of the flow and against it, but at long times these
terms become negligible and the anisotropy disappears.

82

This constitutive equation is obviously a simplification,
since the Taylor dispersion flux is not a single quantity
but the sum of an infinite number of partial fluxes. The
rest of the paper is dedicated to analyze the validity of
this equation for the study of the longitudinal dispersion
of a solute suspended in a solvent flowing in a tube along
all the time span; this is done both theoretically, Secs.
IIT and VI, and through its comparison with numerical
simulations, Secs. IV and VI. To this end, Eq. (8) for Jr
must be combined with the mass balance equation

de(z,t) 8J(=z,t)

dt oz
J(z,t) is the total particle flux, which can be written as
the sum of a molecular part, J,,, and a flow-dependent

contribution, Jr, namely, J = J,, + Jr. The constitutive
equation for J,,, is assumed to be Fickian,

Oc(z,t)
oz (11)

=0. (10)

Jom = =D,

since molecular diffusion relaxes in a time of the order
of the collision time, much smaller than the time scale
under study.

With the help of (8), (10), and (11), one finds

63 dc

+ TrBuDpm——= + 13Dy Fys (12)

[

(e) It provides a transition from a partially reversible
regime at short times to a purely irreversible regime at
long times (a similar transition has been observed exper-
imentally in tracer dispersion in porous media [27]). In
effect, for t < 7r, the time reversal terms 82c/8t* and
ua%/ Oz 0t are relevant, so that some reversible behavior
in the dispersion of the solute is predicted at these time
scales, but in the long-time limit they become negligible
and the behavior turns out completely irreversible. Sec-
tion IV is devoted to the study of this transition with the
aid of numerical simulations.

Neglecting molecular diffusivity, i.e., making D,, =
Eq. (8) yields

8% dc d*c 5, 8c . 9% 13
o o T T e e~ PTae (1)
which aside from the term in I1 coincides with the equa-
tion found by Smith as an approximation to his delay-
diffusion equation [8], obtained through a completely
different method based in a three-dimensional analysis.
Smith showed that the concentration profiles predicted
by Eq. (13) — with lr = 0 — are inadequate at short
times. Despite this, from the comparison with numerical
simulations we are seeing in Sec. IV that the predictions
of (12) for the second moments of the distribution un-
der uniform initial conditions are very satisfactory at all
times, including the short-time limit.

Contrary to Smith, our main interest is not to find
an excellent curve-fitting equation, but to point out that
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our Eq. (12), obtained in a purely macroscale way from
the second law of thermodynamics, contains the essence
of the longitudinal dispersion in a tube, namely, incor-
poration of molecular diffusion, transition to irreversibil-
ity, transient anisotropy, dependence on transverse ini-
tial conditions at short times, and asymptotic diffusion
at long times. Also notice that the transport coefficients
appearing in it are general, as corresponds to a ther-
modynamic framework; Eq. (8) could be the constitutive
equation for a general flux, not necessarily related to Tay-
lor dispersion; in the case of tracer dispersion in porous
media, for instance, it may describe the mass flux asso-
ciated to mechanical dipersion.

III. KINETIC FOUNDATIONS OF THE GLOBAL
MODEL

In the latter section, we have obtained a purely
macroscale equation for Taylor dispersion by means of
a completely unidimensional framework. The aim of the
present section is to derive the one-dimensional equation
for the Taylor dispersion flux starting from a detailed
tridimensional analysis, similarly as hydrodynamic equa-
tions can be deduced from kinetic theory. This will en-
able us to get specific expressions for the coefficients 7,
B, and It for the case of the Taylor dispersion.

The procedure followed by Smith [8] to obtain a tele-
grapher equation similar to our Eq. (12) from the three-

dimensional convection-diffusion equation is not ade-
quate for our purposes for several reasons. Aside from
the fact that Smith did not pay any attention to the
Taylor flux: (a) the corresponding quantity in his paper
is affected from the beginning by the main ansatz of the
article, Eq. (1.5); (b) a truncation is required to obtain
his delay-diffusion equation whose approximation yields
the telegrapher equation; and (c) Smith’s development is
limited to uniform discharges. We develop here a more
general analysis, not based on an ansatz and without a
priori restrictions on specific initial conditions.

In Ref. [25], we showed that the Taylor flux, Jr, is the
sum of an infinite number of contributions, J,(z,t), sat-
isfying the following constitutive equations for a steady
flow:

N D, 8c(z, t) 8%J,

Jjoadn 9 E ' J. = _=n

n+ T + Oz Pt TYmndm . Oz + Dm 522’
(14)

where the coefficients are related to the Fourier compo-
nents of the velocity field through
D, = TYmn =

1 v
_'Uyzﬂ'm '2' (vm—n + 'Um+n) v_’n (15)
m

2
The time spectrum 7,, depends on the section geometry;
for flows between two parallel plates separated by a dis-
tance d, it takes the form 7, = d?/D,,m%n?.

In order to obtain a constitutive equation for Jr we
have to add all the contributions,

S Ee g >
ot YmnJ;
n=1 m,n=1 n=1

and approximate the summations so that they only con-
tain the variables Jr and c(z,t). This is done by consid-
ering each sum separately.

(i) Since the last term on the rhs of (16) has exactly the
same form as the last term of Eq. (8), we may connect the
correlation length I and the relaxation time 7 through
the relation % = 70D,

(ii) In the short-time limit, the term in 7, J,, of (14) is
much more 1mportant than the one in J,,. For this reason,
the summation Y - ; (Jn/7s) is negligible in front of Jr
in this limit. Similarly, the term in Jr of Eq. (8) can be
neglected as compared to rrJr at short times, and we
can identify (to simplify notation from now on we write
T instead of T7)

> me1Dn
S (/) (a7

Analogous expressions for effective relaxation times in
the short-time limit have been found for every dissipa-
tive phenomenon in systems described by a spectrum of
fluxes, each with its own relaxation time [28, 29].
In contrast, at long times the term in Z;L’ll JIn

T =

[Tn is

el 2
- _ ( &_) aC(xvt) +Dma JzT, (16)
Z Tn ox

—

the most important one; in this limit we may approxi-
mate J,, ~ —D,dc(z,t)/0z so that Dr = 5 . | D, and,
from (17),

et A (18)

The substitution of (18) into (16) is exact both in the
short- and long-time limits, but only an approximation
at intermediate times.

By using (15), (17) yields

S )
Zn:l UnTn Dr

T = = =. 19
Sk W 49
This expression differs from Smith’s parameter [8]:
Done1VnTa
A 20
TSmith Z;:(;l ’U%Tn ( )

The origin of the discrepancy is that Smith obtained his
time constant to get the correct value of the variance at
long times for a uniform initial discharge. In contrast,
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our analysis is placed in the opposite limit, it does not
restrict to the variance, but is referred to the whole Tay-
lor flux, and it is not limited to specific initial conditions.
Expression (17) is thus set in a very general basis.

(iii) Finally, we approximate the double summation by
a term of the same form but exclusively written in terms
of JT:

00
Z Ymndm ~ v Jr, (21)

m,n=1

where the coefficient v has been introduced to be com-
pared with Smith’s expression. After substituting (17),
(18), and (21) into Eq. (16) one obtains the average equa-
tion
2

Jr +7dr + ’UTQaJ?T =—Dr ac(a:;’ 2 mT aa:;;T ,
which has the same form as (8), as we wanted to show;
this allows one to identify the parameter g as § = v/u. In
the Appendix we find two expressions for this parameter,
one from a study at short times and the other from a
long-time analysis.

In the following sections we deepen in the dynamical
consequences of our model equation, Eq. (12). Since this
is approximate, it is interesting to evaluate its validity
through the comparison of its theoretical predictions with
numerical simulations. We start with the study of the
transition to irreversibility.

+D

(22)

IV. COMPARISON WITH NUMERICAL
SIMULATIONS: TRANSITION
TO IRREVERSIBILITY

The aim of Secs. IV and V is the comparison of the
theoretical predictions of the global model and the re-
sults of numerical simulations. For the sake of simplicity,
the simulations have been performed for a flow between
parallel plates. In all of them, we have considered a plane
Poiseuille flow.

A. Description of the simulations and their results

The basis of the simulations is quite simple (this type
of simulation has been previously performed by Rigord
[30]). We start by considering two parallel lines sepa-
rated by a distance d = 2a and a big amount of points
(N) uniformly distributed between them in z = 0 (see
Fig. 1); these points represent the solute particles. At
every time step 7 each particle develops two motions: it
travels a length l.(y) = v(y)7s, as corresponds to the con-
vection under the solvent flow v(y) = (3/2)u(l — y?/a?),
and a length l;—independent of y—in a random direc-
tion, aiming to simulate the two-dimensional Brownian
motion of the solute particles. When the random motion
takes the points out of the lines, a specular reflexion of
total distance l4 is assumed. One lets the system evolve,
computes the value of (Az?) at different points in time, ¢
({) denotes the average over the simulation distribution),
and represents the ratio (Ax)?(t)/2t = D(t) versus the
penetration length of the solute as a whole, L = (z(t)).

1
L 4
d
X
FIG. 1. Description of the simulations: every time step 7

a solute particle located at a point (z,y) displays a convective
motion l. = v(y)7s, modeling the solvent velocity field, and
a diffusive one of constant length I with random orientation
(in two dimensions), trying to modelize the Brownian motion
of the solute due to collisions with the solvent.

We have introduced the function D(t) that may be called
the “effective dispersion coefficient” since it has the di-
mensions of a diffusion coefficient and it tends asymp-
totically to D in the long-time limit. This simulation is
referred to as a transmission dispersion simulation. The
results for some specific values of the parameters are dis-
played in Fig. 2 (squares).

Other simulations consist of letting the system evolve
during a time span t;, suddenly reverse the velocity field,
v(y) — —v(y), and represent again D(t) as a function of
(z(t)). These are called echo dispersion simulations. In
Fig. 2 some inversion curves are displayed (diamonds) for
different inversion lengths.

We may give a rough interpretation of the results
shown in Fig. 2. In the transmission simulation curve
one can distinguish three regions: two constant ones, one
at short times (short penetration lengths), and the other
at long times, and a transition region between them. The
constant behavior in the short-time limit obviously corre-
sponds to the domain of molecular diffusion, and the flat
regime in the long-time limit to the completely developed
Taylor dispersion.

Referring to the echo simulation curves, there are some
points to comment on.

(i) For very short inversion times the effective disper-
sion coefficient approaches the value D,, at a time twice
the inversion time (¢ = 2¢;). This is understood in a
very simple way: the fluid particles initially start moving
with the velocity profile, inside each of them the diffu-
sion process takes place but because of the short time
of the “experiment,” the fraction of solute particles that
escape from their original fluid particles is negligible so
that when one reverses the velocity field and analyzes the
dispersion at t = 2¢; every fluid particle is found at the
same place that in t = 0 but with a diffusion process that
has been occurring along all the time. The behavior is
thus partially reversible.

(ii) In the long-time limit, in the regions where the
transmission curve is flat, the echo curves are straight
lines. It means that the reversion of the velocity field does
not affect the dispersion process; this is like this because
at those long times the mixing process is so intricate, the
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coupling between the solute and the velocity field has
been so strong, that the reversion of the velocities does
not contribute to recover the initial distribution, but the
mixing process is similar to the case when one keeps the
velocity field unchanged. In this limit, the dispersion is
thus completely irreversible.

(iii) At intermediate times, in the transient region be-
tween the two pure diffusive regimes, the effect of revers-
ing the velocity field is, essentially, a fast decrease of D(t)
just after it, followed by an increase, reaching at t = 2t;
values between D,, and D which are smaller than the
corresponding ones at ¢t = t;. Then the reversion of the
velocities leads to a stronger dispersion than the simple
molecular diffusion, but smaller than in developed Taylor
dispersion.

In summary, echo simulations evidence the existence
of a transition from a partially reversible regime at short
times and a completely irreversible regime at long times,
in agreement with the qualitative prediction of our model
equation (12). In the following section we analyze its
consequences quantitatively.

S
=
s
5
2
2
=
3]
1 | 1 | L
1072 10-1 100 10! 102
PENETRETION LENGTH (L)
L T T T T
(b)
101 oo oer e e v oo oo
&)
=
2 100
=
=
=
S
g 107!
1 L 1 1
100 10! 102 103
PENETRATION LENGTH (L)
FIG. 2. Comparison between theoretical predictions and

simulations. Squares and diamonds correspond to transmis-
sion and echo simulations, respectively; the theoretical curves
are denoted by solid lines. We show the results for two differ-
ent Péclet numbers (Pe= ud/D,,). In all the cases we have
chosen lg = 0.03 and d = 7, = 1; the inversion times are
given in time step units: t; = 10, 30, 100, 300, 1000, 3000. (a)
u = 0.01 (Pe= 44), N = 5 x 10%; (b) u = 1.0 (Pe= 4400),
N = 105.

B. Theoretical analysis of the simulations

In order to compare with the preceding numerical sim-
ulations we must calculate an expression for the effective
dispersivity D(t). To do this, we use the method of mo-
ments in Eq. (12), keeping in mind that the amount of
solute in the system is constant in time:

d?z?2  dx?
T + pra 2D. (23)
It is noticed that for a uniform initial distribution the
parameter 3 does not affect the evolution of the second
moments; this is not like this for nonuniform initial dis-
tributions, as we will see in the next section.

Analogously, it is straight to prove that for the initial
distribution under study the mass center of the solute
moves with the mean velocity of the flow all over the time:
Z(t) = 0. Therefore, Eq. (23) describes the evolution of
the width Az. Its integration under initial conditions,
z2(0) = 0 and ‘-if?—-(O) = 2D,, — since at very short
times molecular diffusion is the only one that does exist
— gives

(Az)%(t) = 22(t) = 2Dt + 2Drrlexp(—t/7) — 1] (24)

and defining L = ut we may write

Dit) = m_”g@ = D+ DrruL~ [exp(—L/ur) — 1].

(25)

In Fig. 2, Eq. (25) is displayed for two different values
of the mean velocity (solid lines), from values of Dr
similar to Dy, [Fig. 2(a)] to Dy > D,, [Fig. 2(b)]. In
both cases is shown a good agreement. We thus see that
including only one new parameter, the relaxation time
(1 = d?/42D,, for a plane Poiseuille flow), we are able to
predict the results of the transmission simulations with
high accuracy.

In the description of an echo experiment, one must con-
sider separately the going interval and the returning one;
we denote them by 2 (t) and z2(t), respectively. The
first function is described by Eq. (24) and the second one
can be found by integrating (23) under the proper initial
conditions; one is obvious: z2 (¢;) = 22 (¢;), the other one
is more subtle. Notice that Eq. (23) can be considered as
the composition of two equations that neatly split Taylor
and molecular effects

d?z2,  dz?
T dt2T + d—tT = 2Dr (26)
and
d 2
-ng =2Dp, (27)

with 22(t) = z4(t) + z2,(t). Since the molecular part is
flow independent by definition, the reversion of the flow
tends to decrease only the Taylor contribution. There-
fore, the suitable initial condition is
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d(z2.) _ d(zE)-
dﬂt‘ * () = —-TIt"-—(t,-). (28)

This condition not only has a clear physical meaning but
it is also mathematically consistent with the fact that
only Eq. (26) is of second order in time. A straightfor-
ward calculation yields the expressions

22 (t) = —TAexp(—t/7) + 2Dt + C (29)
]
TAU 1 2L; Cu
D(L) 5 2L,-——LexP( >+D+

In Fig. 2 a good agreement is shown between the the-
oretical curves (solid lines between diamonds) and echo
dispersion simulations (diamonds). We notice again that
it is quite surprising that such a good fit is obtained by
only introducing one new parameter.

From the viewpoint of extended thermodynamics, the
excellent agreement between theoretical predictions and
numerical simulations emulating Taylor dispersion con-
stitutes a new support for the theory that, up to the
moment, had essentially limited the comparison with ex-
perimental systems to wave speed measurements.[31]

V. COMPARISON WITH NUMERICAL
SIMULATIONS: NONUNIFORM
INITIAL DISTRIBUTIONS

In the latter section, we did not have to use any value
of the parameter 3 characterizing the anisotropic disper-
sion in the study of the theoretical predictions for the
second moments under the uniform initial distribution
considered. The question we address now is to test the
different values of 8 and the terms themselves that are af-
fected by this parameter. It is evident that the third mo-
ments in the simulations developed there should neces-
sarily involve the parameter (3, since it is the lowest-order
moment which accounts for the asymmetry in the solute
concentration which this parameter intends to describe.
Nevertheless, this average turns out to be extremely sen-
sitive to the number of points used in the simulations
so that an enormous calculation power is required. For
this reason, we have chosen a different option and stud-
ied the time evolution of the mean square deviation for
initial distributions in which the solute is not uniformly
distributed along the section. This will let us study the

with
A =2D7p[1 — 2exp(t;/7)], (30)
C = 2Drr[2exp(—t;/T) — 3]. (31)

In order to draw the echo curves one must substitute the
parameter t by (2L; — L)/u, L being the position of the
mass center of the solute at time ¢t. The curves are thus

(32)

validity of our model equation for different initial condi-
tions.

A. Theoretical analysis

For the second moments, Eq. (12) supplies the equa-
tion
d?z?  dz? dz
TW—*_E ——2D+2ﬁ7’u5
(D = Dp, + Dr) which depends on 3 through a term
that contains the time derivative of the mean position of
the solute. For an initially uniform distribution Z(t) =0
all over the time, but for nonuniform discharges things
are different. Thus, we consider an initial distribution
in which the solute occupies a fraction A of the distance
which separates the plates and it is centered between
them (for A =1 we recover uniform initial conditions).
In terms of the dimensionless parameter A, the ini-
tial velocity of the solute under a Poiseuille flow can be
written as

(33)

1 [Ad/2 u \
v = = v(y) = = (1 — A°), 34
0=/t =5 -4 (34)
and solving the evolution equation for Z(t) one finds
T(t) = vor1 [1 — exp(—t/T)]. (35)

This expression — which does not contain § — will also
be compared with the simulations. It must be stressed
that Eq. (35) predicts that at asymptotic long times the
solute moves with the mean flow velocity, as Aris proved
[3].

After introducing (35) in (33) and integrating under
initial conditions 22(0) = 2D,, and z2(0) = 0, one arrives
at

Z2(t) = 2Dt + 2D [exp(—t/T) — 1] — 2BuvoT? [(1 + %) exp(—t/T) — 1] . (36)
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The effective diffusivity, D(t) = (x2(t) — Z(t)?)/2t, is
obtained by direct substitution of (35) and (36).
B. Numerical simulations

In the present section only transmission simulations
have been carried out. Three cases are considered: (a)
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FIG. 3. Comparison between theoretical curves (—) and

numerical simulations (o) for the mass center position of the
solute as a function of time. The influence of the mean flow
velocity (u) and the occupation factor (A) are shown.

A=0.6,u=0.01; (b) A=0.6, u = 1.0; and (c) A = 0.2,
u = 0.01. In this way the effects of the occupation factor
A and the mean velocity u are pointed out.

In Fig. 3 the simulation results for the evolution of the
center mass of the solute, X, ., as seen in a framework
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FIG. 4. Comparison of the theoretical effective diffusivity

with numerical simulations (O) for three values of the pa-
rameter 3: —1/5 (—); —4/33 (Smith, — =); —2/7 (---). The
influence of the mean flow speed and initial conditions are
shown.
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which travels with the mean flow speed, are represented
with diamonds. This quantity is obviously more adequate
for our purposes than the penetration length L = &(t)),
which at long times tends to mask the displacement de-
scribed by (35); solid lines correspond to this expression.

The fits are shown to be good along all the time in-
terval for simulations in which A = 0.6. For them, the
maximum disagreement is reached for asymptotic long
times, being of the order of 3%. For A = 0.2, however,
the error is small at times shorter than 7 (~ 100), but
reaches 15% at long times. We thus prove that, though
the dynamics predicted by (35) is qualitatively correct,
it is not quantitatively for small values of A. For values
greater than, let us say 0.5, the agreement is excellent
independent of the velocity of the flow.

Figure 4 displays the results of the simulation for the
effective diffusivity D(t) = (&) — @)2)/2t as a function of
the penetration length L (squares). The shape of these
curves is obviously similar to the corresponding ones in
Sec. III. With solid lines we draw the theoretical diffu-

sivity for the value 8 = —1/5; broken lines refer to
Smith’s parameter Ssmith = —4/33, and dotted lines to
Bo = —2/7.

In all the cases an excellent agreement is observed be-
tween numerical simulations and theoretical predictions
with 8 = —1/5 for times greater than 7; for the other
values of (3 the fit is clearly worse.

For u = 0.01 and A = 0.6, the predictions using (B, are
excellent over all the time interval. For u = 1.0 and A =
0.6, theoretical curves are qualitatively good at all times
but there exist quantitative discrepancies at short times
for the 8 parameters considered; again, . provides the
best fit; the choice of a slightly smaller value of 8 would
supply a good fit at all times. For u = 0.01 and A = 0.2,
however, the curves exhibit a wrong behavior at times
smaller than 7.

In summary, the macroscale equation provides a good
description of the time evolution of the mass center of the
solute and the effective diffusivity for initial conditions
where the solute is spread enough over the section. For
the effective diffusivity the fit is excellent at times greater
than 7 for all initial distributions.

VI. COMPARISON TO OTHER APPROACHES

The problem of the Taylor dispersion has been faced
from very different points of view. Using stochastic the-
ory, Van Den Broeck obtained an expansion at short
times of the exact expression for the second moments of
the concentration under uniform initial conditions [12]:

d
(62°(t)) = 2Dt + 211' (/0 dy [vz(y) — u]2) 2.
(37)

Therefore, the first-order correction to pure molecular
diffusion turns out to be simply the mean square devia-
tion of the flow velocity. This is in agreement with the
short-time expansion of Eq. (24), namely,

(AZ)?(t) = 2Dt + %tz +-- (38)

since our relaxation time, Eq. (19), provides Dr /7 = v2.
The asymptotic result (37) has the inconvenience that
the coefficient of the term in t* and the following ones
diverge for common stream patterns, as linear shear or
Poiseuille flow, that make the exact expression heavily
intractable. Then Eq. (24) seems to supply a simple way
of describing Az? avoiding the mathematical problems
of the detailed development.

Gill and Sankarasubramanian [5, 6] and Smith [8] pro-
posed different one-dimensional equations for contami-
nant distribution including time-dependent coefficients.
Smith’s delay-diffusion model presents two main advan-
tages with respect to the first one: (a) there is no re-
striction to sudden discharges of solute at a single point
in time, and (b) its coefficients have a clearer physical
interpretation. The problem of this equation is that it
generally does not provide analytical solutions, but Smith
showed that his delay-diffusion equation could be approx-
imated by a telegrapherlike equation, with the advantage
of known analytical solutions, but it leads to bad results
for the solute concentration at short times when com-
pared with exact numerical solutions. Nevertheless, in
view of the preceding sections we may conclude that, al-
though the telegrapher equation may not supply a suit-
able solute distribution as a whole in the short-time limit,
its second moments are described with great accuracy at
all times for spread enough initial distributions. A quan-
titative analysis between the results of the simulations
and the theoretical transmission curves for uniform ini-
tial concentrations shows excellent agreement along all
the time scale but with a systematic error for times of
the order of 7 always smaller than 2%, independent of
the mean velocity (outside this region there is no system-
atic error). This is the cause of the (small) disagreement
between the theoretical echo curves and the simulation
results at intermediate times shown in Fig. 2. The simi-
larity between the time parameter obtained by Smith for
asymptotic long times [8], d?/40D,,, and our relaxation
time, d?/42D,, evaluated at short times, explains why
the same parameter works very well all over the time.

One may take benefit of this fact by using the study
of the second moments at short times to measure molec-
ular diffusion coeflicients without the inconvenience of
long observation times and long tubes that characterize
their measurement through asymptotic Taylor dispersion
in the case of Brownian particles [13].

Young and Johns [10], on the other hand, find an equa-
tion including only constant coefficients which allows one
to evaluate exactly the time-independent corrections for
the asymptotic moments of the solute distribution, but
omits the exponential transients. The present approach,
however, in spite of providing only approximate values for
these corrections, is able to describe properly the second
moments at all times.

Finally, we emphasize that the philosophy of the
present approach is closer to the generalized Taylor dis-
persion than to the previous models. While Frankel and
Brenner’s attempt to improve the asymptotic long-time
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character of GTD by introducing an expansion in gra-
dients, J = —DVc + D3 - VVe¢, did not succeed, our
approach, with only a few new parameters (7 and ()
seems to work very well for the second moments along
all times. Like them, we propose a constitutive equation
for a global (y-averaged) flux in terms of constant phe-
nomenological coefficients but, in contrast, we have set
this equation in the framework of extended irreversible
thermodynamics instead of classical thermodynamics.

Third moments

Although we have not been able to compare the pre-
dictions of (12) for the third moments with numerical
simulations because of computational limitations, instead
we can contrast to other theoretical models. Referred to
third moments, the theoretical studies performed up to
now basically restrict their analysis to the asymptotic
regime [3, 4, 18, 10].

Chatwin [4] demonstrated that the mean cubic devia-
tion of the solute distribution, v3(t), in the limit of long
times verifies the following properties: (i) linearity in ¢,
and (ii) independence on initial conditions.

(2k +1)!
!

Z2RFL (¢]yo) o~ ((2:;{*11))"

with D3 a coefficient (in general a tensor) independent of
position, time, and initial conditions, and A(ye) a func-
tion of the latter.

For k =1, it yields

x3(t|yo) = 6D A(yo)t + 6Dst, (43)

which shows two contributions: one independent of the
initial distribution — which can be used to define g =
D3 /Drru — and another which depends on them. For
k = 0, (43) gives Z(tlyo) = A(yo), so that 6DA(yy) =
6Dz, which coincides identically with the correspond-
ing term in (39).

Therefore, our purely global model provides good
agreement with the other theoretical models for the lead-
ing terms of the third moments. It can be seen that it
also supplies qualitatively suitable contributions for the
correction to these terms from the viewpoint of the func-
tional dependence on the Péclet number (P) as well as
the incorporation of initial conditions. For instance, un-
der uniform initial conditions in a circular tube of radius
a the asymptotic second moments are [10]

P2q2
360

meanwhile our model yields —2D77 = —P?a?/384 (and
similarly for third moments).

As Frankel and Brenner proved, the inclusion of trans-
verse initial conditions in these corrections is completely
forbidden for a global model in which the flux is written
as a gradient expansion of the average concentration.

22(t) = 2Dt — (44)

A simple analysis of Eq. (12) for the first three mo-
ments in the long-time limit under nonuniform initial
discharges yields, for the leading term,

23 = (6Dr7Bu + 6Dxo) t, (39)

where 2, denotes the asymptotic center mass position
which, as we have seen, depends on initial conditions. In
this limit

v3(t) = (x — T)3 ~ 23 — 32200, t — 0O (40)
and z2(t) = 2Dt; therefore we get

v3(t) = 6 DpTBut, (41)

which fulfills Chatwin’s conclusions: linearity in time and
independence on initial conditions.

On the other hand, Frankel and Brenner [18], also by
means of an analysis in the complete coordinate space,
find some expressions for the moments of the distribution
in the asymptotic limit. For odd moments — z2k+1(t|y)
in our notation, where yo indicates its dependence on
initial conditions — their Eq. (3.15) writes

[(Dt)*A(yo)] + ———- [(Dt)*~1Dst] + O(tF) (42)

Young and Jones [10], on the other hand, find exactly
the second-order corrections but their model does not
allow one to obtain the transient terms, in contrast to
our model, which at short times also provides qualitative
good behavior.

VII. CONCLUSIONS

Starting from the formalism of extended irreversible
thermodynamics we have shown a purely global model for
the Taylor dispersion. Contrary to previous approaches,
where the coarse-grained equations are found from a
study in the three-dimensional space, ours is completely
one dimensional. The macroscale equation thus obtained
is not intended to be exact but the simplest equation cap-
turing the main features of Taylor dispersion along all
the time span. From an analysis in three dimensions we
have recovered the macroscale equation, thus getting a
microscale confirmation, and obtained some explicit ex-
pressions for the general transport coefficients appearing
in it.

The comparison with numerical simulations has shown
that our macroscale scheme works well over all times for
the evolution of the mass center and the effective diffu-
sivity for spread enough initial distributions; the fit is
also good from intermediate times for any initial distri-
bution. We have seen as well that the coarse-grained
model is in agreement with theoretical analysis carried
out in the tridimensional space for the third moments,
both at long and short times. These points, added to
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the incorporation of transverse initial conditions (as seen
from the fact that our model equation is of second order
in time), of the anisotropy induced by the velocity profile,
the description of the transition to irreversibility, and the
asymptotic diffusive behavior, allow one to conclude that
our — conceptually and operatively — simple macroscale
model captures the essential features of Taylor dispersion
along all the time interval.

From the viewpoint of levels of description, we have
presented here a macroscale framework (which works in
a reduced coordinate space) that leads to a macroscale
equation with general phenomenological coefficients (D,
7, and ). The explicit form of these coefficients in terms
of more fundamental quantities depends on the specific
system under study (tube geometry, porous media, etc.),
which implies an analysis in the complete coordinate
space. This is analogous to the relation between ther-
modynamics and kinetic theory, where the restricted co-
ordinate space coincides with the spatial coordinates, and
the complete space besides includes some internal ones,
such as angles or velocities, for instance. It is nice to see
that in both coarse-graining processes the resulting equa-
tions have essentially the same form: relaxational equa-
tions for the fluxes with Fickian behavior at long times,
and telegrapherlike equations for the specific magnitude
under study, with asymptotic diffusive behavior.
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APPENDIX: EXPRESSIONS
FOR THE PARAMETER g3

In order to obtain some expressions for the parame-
ter 8 = v/u, which incorporates the anisotropy in the
macroscale equation, we must properly work approxima-
tion (21); this can be carried out in the long- or the
short-time limits.

1. Long times

For asymptotic long times we may approximate J, ~
—D,8c(z,t)/dz, so that

oo oo} D
Z Ymndm = ( Z 'YmnD_;’j) Jr (A1)
m,n=1 m,n=1
and using (15) v can be expressed as
1 o0
v = ZD—T m;_—l (Vm—n + Ym+n) UnVUmTm. (A2)

This formula can be written in terms of the shape factor
g(y, 2) introduced by Chatwin [4, 8] in the following way:

Dmvzg =u-—- v(yi z)

with § = 0, and n - Vg = 0 at the boundaries. After
some calculations, one finds
gv2

v=55 (A3)
(again, overbars denote section averaging). For a plane
Poiseuille flow, Eq. (A3) yields v = —u/5, or what is the
same, 8 = o = —1/5.

Notice that our expression for v is different from
Smith’s [8], v = vg?/g?, obtained from the analysis of
the third moments under uniform initial conditions; for
a Poiseuille flow, Bsmith = —4/33.

2. Short times

In this limit, Eq. (14) can be approximated by J, =~
—(Dn/7n)0c(z,t)/0xz. Working in the space of frequen-
cies it is immediate to arrive to

> > D, T
Z 7m'nJm =~ ( Z 7mn—'ﬁD—) Jr. (A4)
m,n=1 m,n=1 Tm T

With the help of (15) and (19) it can be rewritten as
v = v3 /v2, which is the same value that one would have
found from an analysis at short times of the mean cubic
deviation under uniform initial conditions. From (12},
for these conditions, we have

d?z3
dt?

~ 6vv2t = 3(t) = vu2td = v3¢3 (A5)

and v = v3/v2. For a plane Poiseuille flow, 8 = 8, =
—2/17.
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